139 research outputs found

    Laser nanotraps and nanotweezers for cold atoms: 3D gradient dipole force trap in the vicinity of Scanning Near-field Optical Microscope tip

    Full text link
    Using a two-dipole model of an optical near-field of Scanning Near-field Optical Microscope tip, i. e. taking into account contributions of magnetic and electric dipoles, we propose and analyze a new type of 3D optical nanotrap found for certain relations between electric and magnetic dipoles. Electric field attains a minimum value in vacuum in the vicinity of the tip and hence such a trap is quite suitable for manipulations with cold atoms.Comment: 9 pages, 6 figure

    A cytoplasmic peptide of the neurotrophin receptor p75NTR: induction of apoptosis and NMR determined helical conformation

    Get PDF
    AbstractThe neurotrophin receptor (NTR) and tumor necrosis factor receptor family of receptors regulate apoptotic cell death during development and in adult tissues [Beutler and van Huffel, Science 264 (1994) 667–668]. We have examined a fragment of p75NTR from the carboxyl terminus of the receptor and a variant form of this peptide via NMR techniques and in vitro assays for apoptotic activity. The wild type peptide induces apoptosis and adopts a helical conformation oriented parallel to the surface of lipid micelles, whereas the variant form adopts a non-helical conformation in the presence of lipid and shows no activity. These experiments suggest a link between structure and function of the two peptides

    A computational study of Si–H bonds as precursors for neutral E' centres in amorphous silica and at the Si/SiO2 interface

    Get PDF
    Using computational modelling we investigate whether Si–H Bonds can serve as precursors for neutral E′E′ centre formation in amorphous silica and at the Si/SiO2 interface. Classical inter-atomic potentials are used to construct models of a-SiO2 containing Si–H bonds. We then investigate the mechanism of dissociation of a Si–H bond to create a neutral E′E′ defect, that is a 3-coordinated silicon with an unpaired electron localised on it. We show that the Si–H bond is extremely stable, but as a result of hole injection it is significantly weakened and may dissociate, creating a neutral E′E′ centre and a proton attached to one of the nearby oxygen atoms. The proton can diffuse around the E′E′ centre and has a profound effect on the defect levels. We show that at a Si/SiO2 interface, the position of the proton can facilitate electron transfer from the Si substrate onto the defect, making it negatively charged

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    Get PDF
    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 solar masses, for non-spinning sources, the rate density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.Comment: 13 pages, 4 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62326, see also the public announcement at http://www.ligo.org/science/Publication-S5IMBH

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p
    • …
    corecore